REVIEWS

HEAT AND MASS TRANSPORT IN GASES AND
THEIR MIXTURES

A. G. Shashkov, T. N. Abramenko, UDC 533.27
and £, V. Ivashkevich

The theory of transport phenomena in rarefied gases consisting of structureless molecules is devel-
oped in [1, 2]. The Chapman—Enskog theory is, strictly speaking, applicable only to monatomic gases,
Inelastic collisions are possible between molecules possessing internal degrees of freedom, In such col-
lisions kinetic energy is no longer conserved, The thermal conductivity depends significantly on the pre-
sence of internal degrees of freedom since energy transport includes internal energy as well as translatory.
Simple molecular-kinetic theory yields for the thermal conductivity the relationship xm/y = fey, which is
experimentally obeyed by monatomic gases, It has been shown experimentally [4] that for all monatomic
gases the factor f equals 2.5 + 0,05, )

To take the internal degrees of freedom into account Eucken effectively postulated that f =fp, =1/4
{9y—>5), assuming that there is no interaction between the translatory and internal degrees of freedom,

Ubbelohde {3] treated the molecules of a gas with excited internal energy states as the components
of a chemically reacting mixture and regarded the flow of internal energy as the energy transported by the
diffusion of these excited states, setting fjn¢ = pDjnt/ and

%n = 25,‘ Ctrans T Do Cyint (1)
for
e
The factor fg is defined by
f = ODinc, 3 k& (E_B_Qi_n_t_), (2)
g n 2 ¢, \ 2 n

Experimental data on the thermal conductivity of gases show that the factor f lies between I, and fg.

Exchange of energy between the translatory and internal degrees of freedom was taken into account by
Wang-Chang and Uhlenbeck, who obtained the following relationship for the thermal conductivity

A = 25kTCU-! [1_’2 Cyint ﬂ_{_ 9 (Cuint)z g.t_t_jl(l—- a[2t )—'l .
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In the limit of a very slow exchange of energy between the translatory and internal degrees of freedom,
relationship (3) goes over into Eucken's formula.

Expression (3) was used by Mason andMonchick{6] to describe the properties of polyatomic gases,
They considered the 1imiting case of a very long relaxation time 7, In effect this corresponds to an expan-
sion of the thermal conductivity as a series in 7,/r, where 7 is the time between two collisions. The zeroth
approximation, used by Mason and Monchick, corresponds to the case 1/Z = 1o/ = 0 for T — «~ and gives:
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Fig. 1, Eucken factor versus dimensionless parameter k (rough
~ spheres). 1) The Kagan—Afanas'ev approximation; 2) Pidduck's
approximation, ‘

Fig. 2. Eucken factor versus dimensionless parameter a (loaded
spheres),
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Allowing for energy exchange between the translatory and internal degrees of freedom has the effect
of decreasing fi.ong and increasing fing.

Starting from intuitive considerations Saxena et al, [7] obtained a modified Eucken factor of the form

= oD, 3 (i_e’B) k_3 k (i 6, — 92) (1___3£>
1 2 \2 1/ g 2 ¢, \ 2 N/ 2c,

1 2 3 (b oD 3k 1 2¢
1— 20 PPN ) —exp | — — 22 5
fimem ( Zsk)} ’s 2cn(2 n)( o) | P(—7 %)) ®
For large Z only two terms need be retained in the series expansion of (—(1/Z)(2¢y/3k)). This gives
fg =fg—1/ 7(5/2—pD ey trans/Cy- It should be noted that the theories of Eucken, Mason—Monchick, and
Saxena et al, were developed without specifying any real model for the molecules of a polyatomic gas, The

relationships obtained in these theories for calculating the thermal conductivities of gases are valid for any
polyatomic gas.

We shall now consider certain specific molecular models and the associated theoretical concepts,

1. Rough Spherical Molecules, In this case the molecule has the form of a rough sphere of diameter
o, mass m, and moEent of inertial I, The distribution function for a gas of rough-sphere molecules has
the form f =f{¥, v, w, t). The equilibrium distribution function has the form

F = u (m/2rkTY? (1/20kT)? exp{— (mv? 4- Iw*)/2kT].

Boltzmann's equation for a gas of rough spheres can be written

ai - afz X’ ai e - > i
T3, —;+-ﬂ76—§i=oz f“ 7, F— ) v (B - 55 dF dodan,
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The thermal conductivity of such a gas can be expressed as

o o (—10a — 6al0 - 200 — 5al? — 531,

Retaining only ¢}% and @{1 1eads to Pidduck's approximation [8]

e 9 (133_7_)1/2 (% -+ 1)* (50«2 + 151% + 37)
1602 \mm 102x3 10142 + 756 + 12

Kagan and Afanas'ev took the three terms a}%, a{1? and a% into account and obtained

3 (BT \Y2 (k +1)?(2000x*--9490x° - 134497336k - 1121)
160° ( nm ) 1360 +3626x* 3973k -+2560x2 +969% 116

A=

where g is a dimensionless parameter, x = 4I/mg?,
Figure 1 shows the Eucken factor f plotted as a function of «,

2, Loaded Spheres, A loaded sphere is a sphere whose mass~center does not coincide with the center
of geometrical symmetry,

Suppose the system consists of n loaded-sphere molecules. The mass of the i-th molecule is m;; the
mass-center is spaced from the geometrical center by a distance #; the moment of inertia relative to a co-
ordinate system fixed in space is I;; f-; is the radius vector of the mass-center of molecule i; 5;1 = (E‘,i’ Bis
vi) are angles characterizing the orientation of the molecule relative to the coordinate system; and w; is
the angular velocity of molecule i, Boltzmann's equation for loaded spheres has the form

-~ 0 X 0 .
f f, o X O O O
m; Ovl Oal 0N,
j S k- gull, @, o Nt OF, 0 @ Mo, #)

(k *821>0)
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l + 3

where

-

Ni_—-_r.-a)

13

The thermal conductivity can be expressed in terms of the quantity g = mg/2I. The Eucken factor is plot-
ted as a function of ¢ in Fig, 2

3. Spherocylinders. A spherocylinder is a smooth right cylinder of length 7 with hemispheres of
radius ¢ fixed to its ends. The mass of a spherocylinder molecule is distributed symmetrically about the
axis of the cylinder, so that the mass-center and the geometrical center coincide. Boltzmann's equation
for a gas of spherocylinders has the form [9]

Tevs Lias, o f a5 =30 T =01t wde, 5, arar,ar;.
r

The thermal conductivityof a gas of spherocylinders can be written

ET\12 1 1

nm) B p+p40.12°

where 8= (I/2)c. The Eucken factor is plotted versus gand A = m12/4I in Fig.‘ 3

?»Nlﬁk(

The experimental and theoretical temperature dependence of the Eucken factor is shown in Fig, 4
for nitrogen and oxygen.

Kinetic theory for molecules possessing internal degrees of freedom has been developed both from
the classical and the quantum-mechanical points of view, A classical formulation of the theory for gases
consisting of rigid nonspherical molecules is developed in [12-15, 17], A more general form of this
theory was discussed by Taxman [18]. The presence of the internal degrees of freedom leads to the ap-
pearance of an additional collisional invariant, connected with the angular velocity, This additional in-
variant gives rise to an additional variable, the "spin® angular momentum of the molecules, and the per-
turbation function should incorporate terms which couple these two vectors.
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Curtiss et al, did not allow for this effect, Dahler {15, 19] considered the influence of this effect on
transport properties in a gas of rough spheres [20] and spherocylinders, and showed that this effect is
small,

A quantum-mechanical treatment for molecules with internal degrees of freedom was given by Wang-
Chang and Uhlenbek [21] and by Wang-Chang, Uhlenbeck, and de Boer [22], They obtained expressions
for the transport coefficients in terms of integrals dependent upon the differential scattering cross sections.
Their theory assumes the cross sections to be asymptotic, which is true only when the states in which the
molecules are found are degenerate,

A more rigorous derivation of the quantum-mechanical Boltzmann equation for a gas of molecules
with internal degrees of freedom was given by Waldmann [23] and later by Snider [24], The Wang-Chang
method was used by Monchick, Munn, and Mason [25] to investigate thermal diffusion in mixtures of poly~
atomic gases. The quantum-mechanical theory of Wang-Chang, Uhlenbeck, and do Boer leads to the fol~-
lowing expression for the thermal diffusion factor of mixtures

o, — - P4y (6C; —5) ( _J_f__) (6)
5k nD,; xm;  xmy

As is well known, the Wang-Chang theory does not involve any spec1f1c molecular model, As~
sumption of a particular model requires the evaluation of a term denoted Q°°'°‘. According to the
Wang-Chang theory, Q%+ — 0 and Mj = Mtrans. For loaded-sphere molecules QQ‘J’ ‘%2 0 and makes

a significant contribution to the thermal diffusion factor orr. For this model we have

o _ (6C;; —5) 1y ( Mtrans _ x,uam) . [(6(:”_5) Ajine__(6C;;—5) Mim_], m

5nkD,; X My x;m, 5nkD;; x; X

It should be noted that the quantity E‘ij is not analogous to the quantity Cf'i‘j and is not symmetric with

respect to an interchange of indices. The quantity Cy;j is essentially dependent on inelastic collisions, and
reduces to zero if the molecules of the j-th component of the mixture have no internal degrees of freedom.

The mechanism by means of which gaseous mixtures are separated into their constituents is closely
linked with the rotational degrees of freedom of the molecules, The thermal diffusion factor is sensitive
to the cross section for inelastic collisions., TFor loaded spheres, the larger f the greater the probability
of inelastic collisions.

Generally, for nonisotopic mixtures, the second term in (7) is much smaller than the first, which
depends essentially on the mass of the molecules and their dimensions, This is indeed why the expression
for g obtained for a mixture of monatomic gases [25] can generally also be applied to a mixture of poly~
atomic gases. The second term of (7) becomes important if the masses and dimensions of the molecules
are very similar (isotopic mixtures), as effects associated with nonsphericity of the molecules (which this
term allows for) are then significant,

An experimental determination of the thermal diffusion of isotopic mixtures of CO {(containing the
molecules C12, C1, Ol¢, O) is discussed in [26]. The influence of a magnetic field on the thermal diffusion
factor was studied experimentally by de Vries et al. [27] using mixtures of krypton and oxygen, It was
shown that an electromagnetic field changes the thermal diffusion factor by not more than 0.4%.
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Fig. 4. Dependence of Eucken factor on temperature [108]
for (a) nitrogen, and (b) oxygen., Curves correspond to: 1)
nonlinearized Mason—Monchick relation; 2) linearized rela-
tion; 3) linearized relation and Dy /D =1+ 0.27/Z + ... .

The quantum-mechanical Boltzmann equation obtained in [23, 24] was used by McCourt and Snider
[28] to derive a quantum-mechanical expression for the thermal conductivity of a gas whose molecules pos-
sess rotational degrees of freedom. This expression contains terms which are the quantum analogs of the
combined linear and angular momenta of the molecule, For the particular case when the "spin" density
equals zero, the expression coincides with Wang-Chang's result. Expressions for other transport coeffi-
cients are derived in [29]. The results obtained in [28, 29] were later used in [30, 31] to derive exact
expressions for the transport coefficients of a gas of loaded-sphere molecules,

We shall now dwell for a moment on the theory of transport phenomena in a dense gas of structureless
molecules, Application of Liouville's theorem for an ensemble of distribution functions leads to equations
of higher order for the distribution function, A generalized Boltzmann equation can be obtained with the aid
of these equations [32]. Bogolyubov's results are used in [33] to derive expressions for the transport coef-
ficients in the form of series expansions in the density. The results are discussed in [34-36], The effect
of triple collisions on the first correction for the density is discussed in [37-39], Numerical estimation of
these corrections in [37, 39] leads to results in satisfactory accord with experimental data at high tempera-
tures, where the influence of forces of attraction is small. Corrections to the quantum-mechanical Boltz~
mann equation which allows for the finite dimensions of the molecules but ignores the effects of many-
molecule collisions are discussed in [40], A more general treatment of the quantum-mechanical Boltz-
mann equation is given in {41-48].

In another approach to the theory of transport phenomena in moderately dense gases the transport
coefficients are expressed in terms of correlation functions, Expressions for the transport coefficients are
obtained in {49~50], The two approaches to the study of transport processes in dense gases are discussed
in [51, 52],

Ernst [53] evaluated his own relationships [54] for the case of a gas of rigid spheres and obtained re-
sults identical to those of [1, 2, 55]. Sengers [56, 57] allowed for triple collisions in a gas of rigid spheres
and obtained results deviating from [1, 2, 55]. He found a correction to the Enskog relation but it was not
estimated numerically. Sengers considers that Enskog neglected certain types of collisions and cyclical
collisions,

Expressions for the transport coefficients were derived in [58-60] with the aid of series expansions
in the density, and it was shown that the term containing the square of the density and characterizing the
collision of four molecules, diverges. It was shown [58, 60, 61] that the logarithm of the density appears
in the relations for the transport coefficients, The divergence is discussed in [63, 67].

Sengers [57, 68, 69] used the distribution function to evaluate the logarithmic term for a gas of rigid
disks. Identical results were obtained in [70] using the correlation functions method,

The Bogolyubov-—-Born-—-Green equation is studied in [71, 72] along with the problem of obtaining a
collision integral to the Boltzmann equation., The contemporary state of the theory of transport phenomena
in dense gases is reviewed in [73]. The modern theory of transport phenomena in liquids is discussed in
[74-82]. Transport phenomena in mixtures of dense gases are studied in [83-85]. In [86] a modified ver-
sion of Enskog's theory [1, 2, 55] for a dense gas of rigid spheres is used to study transport phenomena
in a dense gas of rough spheres.

The thermal conductivity of chemically reacting gases is investigated in [5, 10, 11], Heat transport
in chemically reacting gases will be much greater than in nonreacting gaseous mixtures, A considerable
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amount of heat can be transported on account of the chemical enthalpy of the molecules, which diffuse under
the action of concentration gradients, These gradients exist because the composition of the gas varies
depending on the temperature, In chemical equilibrium, irrespective of the geometry of the device for de-
termining the thermal conductivity, the equilibrium thermal conductivity can be written in the form

ho=As+ A,

where ¢ is the thermal conductivity in the absence of chemical reactions, and Ay is the thermal conductivity
on account of chemical reactions. The heat-flow equation has the form

iT | % ¢
g=—Mr" = + E W H; = —\* ( AT/ j r—“dr) . (8)
r i=1 !

L£3

The coefficient a characterizes the geometry of the device for determining the thermal conductivity: for
parallel plates ¢ = 0, for coaxial cylinders ¢ = 1, and for concentric spheres ¢ =2, The quantity AT is the
temperature difference between the walls of the device, Equation (8) serves to define the "thermal con-
ductivity" of a reacting gas, It is well known that A* coincides neither with ¢ nor with the thermal conduct~
ivity at chemical equilibrium, and depends on the geometry of the device used to determine the thermal
conductivity,

Mishina {87] constructed a closed system of differential equations and boundary conditions for heat
and mass transport in the reacting (with finite rates) mixture NyO, = 2NO, == 2NO + O,, located in a heat-
conducting space of cylindrical geometry bounded by surfaces of arbitrary catalytic activity, On the as-
sumption that the composition does not deviate much from the equilibrium composition and that the tempera-
ture drop across the space is small, analytic expressions were obtained for the off-equilibrium composition
and for the mean (over the space) and the local "thermal conductivity” of the mixtures N,O, = 2NO, and 2NO,
= 2NO + O,,

The thermal conductivity of a n~.equilibrium partially ionized gas is discussed in [88]. The proper-
ties of an ionized monatomic gas are studied in [89]., It was shown that higher-order approximations should
be used to calculate the thermal conductivity, The properties of an ionized polyatomic gas are examined
in [90]. A relationship is given by means of which the thermal conductivity of such a gas can be calculated.
A number of papers have been devoted to the properties of equilibrium nitrogen plasma, In particular,
experimental and theoretical results on the thermal conductivity are compared by Penski [91]. The thermal
conductivity is calculated at various pressures with and without charge exchange taken into account, The
thermal conductivity of a gas due to thermal diffusion in the presence of chemical reactions and ionization
is given by [92, 93]

3 M;D,; (0x,/0T),
M:ELiﬁfif
b i ' | T M, RT > M,

o [(2an) Ry L (D5 o))
+RT2L.ATi[( oT )p p {;Dij (MJ % M_;)} .

The influence of thermal diffusion on the experimental determination of the thermal conductivity of
gaseous mixtures is cqnsidered in [109]. The results obtained in this paper characterize the maximum
correction for thermal diffusion in the nonstationary state.

According to the data of [109], the correction for thermal diffusion, ApT/A exp, for a concentration
of the heavy component of x, = 0.1 equals for the mixtures: He—Xe (T = 302,15°K) approximately 12%;
Kr—Xe(T = 302,15°K), ~3%; Hy—COy (T = 298.15°K), ~7.9%; Hy;—O, (T = 295,15°K), ~7%,

Transport properties in gases and their mixtures at low temperatures are discussed in {94-100, 107],
The influence of quantum effects on the thermal conductivity of a gaseous mixture is investigated in {96].

The concentration dependence of the thermal conductivity of mixtures on nonreacting gases is studied
in [93].

We shall dwell for a moment on the thermal conductivity of water vapor, Geier and Schafer [101]
measured the thermal conductivity of water vapor, nitrogen, and other gases in the temperature range
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100-1000°C, Their experimental data for water vapor at high temperatures are almost 109 less than the
smoothed values of Vargaftik and Zimina [102], which form the basis of the standard tables on the thermal
conductivity of water vapor at low pressures, Geier and Schafer did not measure the thermal conductivity
of argon, so that direct correction of their values for the thermal conductivity of water vapor is not pos-
sible, Vargaftik and Zimina [103] measured the thermal conductivity of argon in the temperature range
0-1000°C; their results are in good accord with theoretical calculations using an (exp-6) potential, Further,
Vargaftik and Zimina measured the thermal conductivity of nitrogen, so that the experimental data of Geier
and Shafer could be corrected:

A A

= Ng, Vo7 ZAr.exp—6

)\HZO corrected )”H,O,G—S )"N,, G-5 }\’Ar, vz
Vargaftik and Zimina noted [104] that Geier and Schafer did not correct for the temperature step,

In order to find this correction one must know the geometry and dimensions of the device for determining

the thermal conductivity, the gas pressure, and accommodation coefficients of the surfaces. When this

correction is made we then have

}“corrected = }‘exp (14 a).

For a device of cylindrical geometry
o 2—a (2aMRT)/? A
a ryin(ry/r) (26, — Ryp’

where ¢ is the accommodation coefficient of the inner cylinder, and ry and ry are the radii of the inner and
outer cylinders respectively. The lower limit of ¢ for the experimental data of Geier and Schafer can be
calculated on settingg =1, p =20 mm Hg,

Theoretical results for the thermal conductivity of water vapor can be obtained for the formula
3 ( 5 PD}:ot)2

5= IR [_1_5_ + PDint Cyint  aZyy, \ 2 1 ] .
M7 q R 575 oD
I —— [ — +——
nZ 2 M

Tot
The dimensionless ratio pDju /m can be expressed in the form
Pl _ 1,902 /Q0
n 1+38 '
The ratio 9(2’2)*/9(1’1)* ~ 1,1, and § is given by

§— < a, > 3 %)2 Q@2 n R/cvint —_5‘“(13 [C)I/Z ~7/2
16 &T) QUDT yRT InUple)A | 4 4la ’

where < a, >= 0.44,

The equilibrium composition and thermal conductivity of water vapor in the temperature range 600-
5000°K was calculated by Svehla [105], The thermal conductivity of water vapor at temperatures 100-6000°K
and pressures 0,1-100 bars was calculated by Kessel'man and Blank [106],

The thermal conductivity of water vapor in the critical region can be calculated using the formula
[44]

}V:}“f“‘_}"n

where A, characterizes the contribution to the thermal conductivity from diffusion and dissociation of groups
of molecules,

D
A, = pD ll)" Cpr-

The quantity Dy, /D can be found from the relationship

Dy 2 L 112
2 = | — 4+ — .
D (1+2.1n1/4> [2 ( + nﬂ
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In conclusion we shall say a few words on energy exchange in collisions of molecules with a rigid
wall, The exchange of energy and momentum between the molecules of a gas and a hard wall depends on
the properties of the impinging molecules (energy, velocity distribution), the model taken to describe the
interaction, and on the properties and structure of the wall, The accommodation coefficients for atrajectory
at a fixed position of a gas molecule are obtained by averaging over the velocities of this molecule, which
has a Maxwellian distribution, The first attempt to calculate the accommodation coefficient was made by
Baule [84] with the aid of the rigid-spheres model, a model which is not, however, suitable for the case of
a rigid surface, The energy exchange coefficients were calculated by Barantsev [65], who considered the
interaction with a surface of gas molecules having an energy 5~10 eV and a relative mass yp = M/m < 1,

The energy accommodation coefficients are calculated in [62] as a function of the collision parameters, In
the various models used to date to represent the interaction of a rarefied gas with a rigid wall, the wall is
assumed to be clean (i.e., there are no adsorbed atoms), A second assumption made in interaction models
is that the wall is smooth, Which theoretical model is to be adopted will depend on the results of an ex-
perimental check of the theoretical suppositions,

NOTATION
T is the temperature;
A is the thermal conductivity;
] is the viscosity;
Cy is the specific heat at constant volume;

Cytranss Cvint are the specific heat due to translatory and internal degrees of freedom respectively;

f is the Eucken factor;

p is the density;

P is the pressure;

D is the coefficient of diffusion;

Y = Cp/Cy; ,

k is the Boltzmann's constant;

Z is the number of collisions of molecules required to establish equilibrium between the
energies of the translatory and internal degrees of freedom;

i is the reduced mass of molecules;

X is the molar fraction of component of a mixture;

Cij is the ratio of collision integrals;

Wi is the molar heat flux of i~-th component;

H. is the enthalpy per molecule.
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